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1. Introduction:

This report concerns the stabilizability of second order bilinear systems,

-Ax + u(Dx + b) (1)

2x2 2
where A, D £ , and x, b c R . While a large literature devoted to the structural

properties of such systems has developed over the past decade [1,2,3], it is fair to

say that little is understood regarding the qualitative behavior of trajectories of

(1). Recently, several authors have investigated the stabilizability of systems of

the form

m

x-Ax + Z uI(Dix + b ) (2)
i-i

n

in R [4,6,7]. These papers derive sufficient conditions and construct controllers

to stabilize systems which meet specific and quite restrictive requirements. In [6]

and [7] a constant pure quadratic feedback law is shown to stabilize (2) when A has

purely imaginary eigenvalues, m - 1, and b - 0. In [4], it is demonstrated that a

constant linear and quadratic feedback law forces trajectories of (2) into an

arbitrarily small bounded neighborhood of the origin, assuming the non-intersection

of the varieties xT P(D x + bi) - 0 (for some positive definite symetric matrix, P)
i i

over a region of interest, and a controller d 'ign is given when 
D i  b icT

It is our opinion that a significant understanding of bilinear systems will

not be possible until more systematic analysis has been accomplished. Accordingly,

in this report we concentrate on a simple problem in some detail. Specifically,

we give necessary and sufficient conditions for the existence of a constant linear

feedback controller to stabilize (1). Even given the limited scope of this problem,

It is safe to say that the statement of necessary and sufficient conditions is

possible only because of recent results in the stability of quadratic systems

developed by the authors [5., This paper depends heavily upon that work.

Problem S tatement:

2
Characterize the properties of the triple (A,b,D) such that for some c R ,

AT
for U c x, the resulting second order closed loop system
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x-Ax+ cxDx A A A+bc (3)

is globally asymptotically stable (g.a.s.).

This problem is completely resolved by Theorem 1, stated below. In the

sequel we assume that b # 0, and D # 0, and we will adopt the notation Ix,yI to

indicate the determinant of the 2x2 array tx,yl.

Theorem 1: The triple (A,b,D) is stabilizable under constant linear state feedback

if and only if either

(i) D has complex conjugate eigenvalues and JDx,xI has the same sign as

JAD-bbf. If (AD'b,b - 0 then the special conditions given in

Proposition 2, below (section 3), hold;

or (il) D is singular and its non-zero eigenvector is a stable eigenvector of A.

If D is singular with a unique real eigenspace, then the special conditions

given in Proposition 4, below (section 4), hold.

After briefly reviewing the properties of the scalar analogue of system (1),

we will present some preliminary results and notation in Section 2, then discuss

condition (i) of Theorem 1 in Section 3; condition (ii) in Section 4; and finally

provide a proof of Theorem 1 by way of sumary, in Section 5. A construction for

a stabilizing linear constant controller is provided in the proof of each case, and

reviewed in the sunary.

It is instructive to consider equation (1) when A - a, D - d, b, x, u c1R,
A

vhich yields the closed loop system (when u - cx)

(a +cdx)x where a a + bc.

Clearly, when d 7 0 this system has an unstable equilibrium at x - -a /cd, and

the origin is never g.a.s. for any choice of c 7 0. Hence when a > 0, (a,b,c) is

never stabilizable under constant linear feedback. The restrictive conditions of

Theorem 1 sem more intuitively reconcilable when compared to tbhs situation in one
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dimension, where an unstable system can never be stabilized by u A cx.

2. Preliminary Definitions and Results:

Evidently, system (3) is an autonomous quadratic differential equation. In

order to characterize the stabilizability of the triple (A,b,D) under constant

linear state feedback, we must, therefore, know something about the stability of

systems of the form

x Ax + c xDx (4)

2x2 2

where A, D C R , c c . In a previous paper [5], we have given necessary and

sufficient conditions for (4) to be g.a.s. To facilitate presentation of these

conditions and later results it is useful to introduce a few notational conventions,

all developed at greater length in that paper - 1
Defining the skew-symmetric matrix J -  we have x1  Jx, the

T T tx 03
orthogonal complement of x, and y x y Jx - Ix,yl, where the last symbol denotes

2 A m2x .

the determinant of the array Ex,y]. If a c 2 , let (a) a {x E a x a Qa, a c R).

Let A denote the symmetric part of a 2x2 matrix, A. If A is singular then A - abT
5

for some a, b c 2 , and if A - P then xT Px - 0 iff x is orthogonal to either a or5

b.

For ease of discussion, we divide the class of 2x2 real matrices into three

sets based upon properties of their eigenvectors as follows: A is said to be

nodal if it has at least two distinct eigenvectors; x-critical if (x) is its unique,

real eigenspace; and focal if it has no real eigenvectors. Since IAx,xj - 0 iff

x is an eigenvector of A, that matrix is focal, x-critical, or nodal iff IAx,xI is

sign definite, smi-definite, or indefinite, respectively. Since IAx,x - xT JAx,

the identical sign conditions on [JA] s specify whether A is focal, nodal, or x-critical,

T 2
as wall. Notice that e is an eigenvector of A iff [JA] s  I a a for some a OR

Some further properties of 2x2 real matrices are presented as facts in Appendix B

(and referred to as such throughout the sequel). Finally, we will say that two

0
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symmetric matrices agree in sign if they are sign definite or semi-definite, and

their non-zero eigenvalues have the same sign.

Using this terminology, we may quote the result of [5] as follows.

Theorem 2 [5]: System (4) is g.a.s. if and only if

(i) A has eigenvalues with non-positive real part;

(ii) [JD]s and ID TJA] agree in sign;

(iii) one of the following two mutually exclusive conditions holds:

(a) D is focal, and D-1A is either focal or x-critical, where

X (c) iff AI 0 0;

(b) D is x-critical and singular, JAI 0 0, and A-ID - YD for some

scalar, Y.

The two distinct cases listed under condition (iii) form a natural framework

for the presentation of stabilizability conditions. In Section 3 we discuss the

properties of the triple (A,b,D) when D is focal, corresponding to condition (iii.a),

above. In Section 4 we consider the case where D is singular, corresponding to

condition (iii.b), above. It is an imediate consequence of Theorem 2 that we

need consider no other cases.

L m ma 1: If D .is not focal and not singular, then system (1) cannot be stabilized

by constant linear state feedback.

Proof: If D is nodal and non-singular, then [JD] is indefinite, and (3) violates
condition (Ii) of Theorem 2 for any c I 2 . If D is x-critical and non-singular

2

then (2) violates condition (iii) of Theorem 2 for any c c B • 0

As a further consequence of Theorem 2, we must choose a linear control law,

AT T
u c_ cx, for system (1) such that ID JA cJ is sign definite or semi-definite de-

pending upon the sign of [3D] . Thus, we may naturally inquire when a vector

cc a ezists such that D TJAC D TJA + DT Jbc T has a dtfinite symetric part.

This question is resolved by the followlng lma and its corollaries.
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Wx 2 2 T
Lina 2: For any Q £ R~ and g £ t , there exists a c £ a such that IQ + gc I a 0

if and only if g, Q91 >,0, and IQ +gc T >O0if and only if g I Qg1 '0.

Proof:

The T. Q+g T ITgLW0

[Q + &cT ] (ag + g1L) M P2 (ag + g T Q (ag + g.0 + p2 a 2Yg Tg w'hich is positive for

I Cs.1

>- 0. But ID TJb]1 D TJA[D TJb] - b T j DJ T D TJAJJD TJb -ID2b JAD1b according to

Fact 1.1. Hence, [D TJA CI a > 0 iff 0 $ bTJDlb l-AD1 1b,bI since IDD12 > 0. The

identical proof holds for [JD] 4 0. 0

Corollary 2.2: If D is focal and IjzxIj - AD7 b~bl > 0,. then, if y c R, c yDTJb

lopli.. [3D) 3 and ID TJA C agree in sign whxen 1Y1 is large enough and sgn Y

ag T IJ19x. In this case D71ACisfcl

Proof: This follow directly from the construction of g in th~e proof of Lama 2,

when Q D TJA. 0
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Corollary 2.3: If D is focal and lAD- b,bl - 0 (b 0 0) then [JD] and [DTJA s

agree in sign iff c A DT J(-d + yb) where d is the other eigenvector of AD 1 and

sgn y = asgn xT [JD] x.* In this case D-1A is D-lb -critical.8 C

Proof: Again, this follows from the proof of Lemma 2. 0

We may now proceed to consider the cases listed above in correspondence with

the conditions of Theorem 2.

3. Stabilizability When D is Focal:

According to Lema 2 and its corollaries, if D is focal, then a c exists such that

conditions (ii) and (iii.a) of Theorem 2 bold, when lAD- b,bl and [JD] have the

same sign. Surprisingly enough, if lAD- 3b,bI 0 0, the same sign condition assures

the stabilizability of (A,b) in the sense of LTI pole-placement and, thereby, of

(A,b,D) in our sense. The following proposition exploits this coincidence,

specifying stabilizability conditions which make implicit use of this fact.

1 2

Proposition 1: If D is focal and JAD- b,bl 0 then there exists a c c R such

-1
that (3) is g.a.s. if and only if lAD b,bj . IDx,xI > 0.

Proof: (i) Necessity: According to Corollary 2.1, condition (ii) of Theorem 2

holds only if IDxxl IAD'b,bl > 0 under the assumptions above.

(ii) Sufficiency: Since IAD-b,b- •DxxI > 0 Implies condition (ii) and

(iii.a) of Theorem 2 according to Corollary 2.2, when c yDT Jb where sgn y

sgn x TjDx " an II Dz,xl and lvi is large enough, it remains to show that (i) holds

under this choice of feedback.

Since tr{Ac } - tr{A) + yb TJTDb - tr{A) - ylDb,b and rlDx,hl > 0 for all

x e a 2 , we have tr{A) < 0 when 1l is large enough.

* If AD- 1 is b-critical, then there is no "other eignvector" and fhe result

follows with d e (b) as seen from the proof of Lama 2. However, if AD- is nodal,
then we require d j (b) in order for this construction to work. Accordinglyllin
the sequel, the terminology other eieievector shall designate d j (b) if AD is
nodal, and d r (b) if AD- is b-critical. -1

** The explicit dmonstration that JAD b,b • lDx,xI > 0 implies LTI stabiliz-
ability is given In Appendix A as a matter of related interest.

Ak L
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Since IAc - IAI + Ibc I + tr{J TcbJA} (Fact B.2)

M !AI + YbTJAJ T DTJb

= IA I + yJIDIbTJAD-lb (Fact B.1)

- JAI + yDlIJAD-b,bl,

ye have JAI > 0 when IjI is large enough, since ID > 0 (D is focal) and

yJAD-l b,b > 0 since sgn y - sgn JDx,xJ - sgn AD -b,bJ.

But tr{A c < 0, JAcI > 0 implies Ac stable. 0

If D is focal but b is an eigenvector of AD- 1 then, according to Leima 2 and its

-1
corollaries, D A cannot be made focal by any choice of c. By Corollary 2.3, there

2
exists a unique c c R such that condition (ii) and (iii.a) of Theorem 2 hold,

however, there is no guarantee that (A,b) is stabilizable in the sense of LTI

pole-placement. Hence, the conditions for stabilizability in this case are more

restrictive, and are given as follows.

Proposition 2: Let D be focal, lAD- b,bI - 0 (b 0 0) and let d be the other eigen--l* R2

vector of AD- I with eigenvalue 6. Then there exists a c e R such that (3) is

g.a.s. if and only if either

(i) AD-1 is b-critical and IA! > 0;

or (ii) AD-1 is nodal and 61d,bl - A .

Proof: (i) Necessity: Assume [JD] > 0 without loss of generality. By Theorem 2,

it is necessary that [DTJAc] , 0, and this is true iff c A DTJ(-d + yb)(where

sgn y - sgn lDx,xI) according to Corollary 2.3, in which case D-1A is D-lb-critical.c

Rmce, by condition (iii.a) of Theorem 2, it is necessary that c1 I(D-l b) iff

IACI 0 0. By construction, c - JD TJ(-d + Yb) - IDID- (d - Yb) (Fact B.1), hence

c 1 c(D-lb) iff d e(b). Thus, we require JAcI > 0 if AD-1 is b-critical, and

See the footnote to Corollary 2.3.

fI



0 - IAcI - JAI + tr{J Tb TJA)C(act B.2) if AD- 1 is nodal. Since tr{J TcbT JA)

- IDI lAD- (-d + b),bI - D t61d,bi, condition (ii), above, follows.

(ii) Sufficiency: By the fotegoing construction of c, all requirements of

Theorem 2 have been met except the demonstration that tr{A c 0. But tr{A C)

- tr{A) - tr{bd T TD} + y trfbbT JT D) and the last term is equal to -yIDb,bl < 0

since sgn Y - sgn EDx,xI for all x. Hence tr{A c < 0 when jyj is large enough. 0

4. Stabilizability When D is Singular:

If D is nonsingular and not focal, then system (3) violates Theorem 2 as

2T
shown by Lena 1. However, if IDV - 0, then for some d, e £ IR , D - deT. Hence,

T eTDx
c xDx -e TxD, and by choosing c £ (d), D' in system (2) is d-critical and

singular (if e c (d) then D is d-critical and singular to begin with). Therefore,

when D is singular, it is possible to stabilize (1) in some cases. Before presenting

these cases, we state the following useful result.

Lemma 3: If D is singular and d-critical, and IAI > 0, then condition (ii) of

Theorem 2 holds iff Ad - ad and a < 0.

Proof: Since TDTJAx fAxi, and xTJ -JxxJ. condition (ii) is equivalent to
-l ddTx T T2 -

o $ IAx,Dx] • lDx,x] - JAI • Ix, A dd TxJ Idd xxJ - (d Tx) 2A Ix,A- d . Id,xI

which is true, assuming IAI > 0, if and only if 0 < zx,A-ldj . fd,xJ. The latter

is possible if and only if Ad-ad ad, a < 0. 0

In general, when D - de T , d (eI), hence D is nodal as well as singular.

In this case stabilizability conditions are quite simple to state.

T 2

Proposition 3: If D - de T is nodal then there exists a c E a such that (3) is

x.a.s. ff Ad - ad, a < 0.

Proof: (W) Necessity: According to condition (ii) of Theorem 2 we require c £ (d)

or c - BJd for D' to not be nodal. In this case condition (iii.b) applies and we

require JAc1 1 0 which necessitates Id > 0 according to condition C) of Theorem 2.

- I.
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Hence condition (ii) holds iff A d - nd, 0 < 0 according to Lema 3. But A d - Adc C

by construction of c, hence Ad - ad, a < 0.

(ii) Sufficiency: Since c 1BJd satisfies conditions (ii) ed (iii) of

Theorem 2, it suffices to show that (i) holds for suitable 0. Since tr{A } - tri&}
c

V T+ O(d,b[ and (Al - JAI + ob JAd - JAI + aS~d,bHJOJ large and sgn a - -sgn (d,b

c
implies A cstable.0

If, however, d c (e.) then a much greater choice of c is available and

stabilizability conditions are more complex.

T 2
Proposition 4: If D - dd T then there exists a c c a such that (3) is g.a.s. iff

either

(a) b is an eigenvector of A in the null-space of D and (A,b) is a

stabilizable pair (in the sense of LTI theory).

or (b) there exists a y E R such that

jAb dl
tr(A) - lbd +y < 0

>0
lb,di

Proof: According to conditions (i) and (iii.b) of Theorem 2, (AcJ 0 and A D "D,
c

hence Ac d yd, or 0 - JA ddj =Ad,dJ + cTdlb,di. If Id,bI - 0 then we require

0 - (Ad,dI - JAb,bl, hence (A,b) is not controllable, and we must have LTI stabiliz-

ability, in which case any c such that A is stable meets the conditions ofc

Theorem 2. This accounts for case (a), above.

If (d,b( J 0 then JA d,dJ - 0 iff c - (yd -Ad) 1 (for some Y )
C I T1 db any

dI TAb d ITAbHence tr[Ac ]  tr[A} -d Tb + Y - tr{Al - bd + y, and JAc I -JAIT---

(Fact 3.2) - JAI - j Ib,dl , giving rise to the condition in (b), above. D

- ~ 4~- ~ - - -~ A
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5. Suumary and Conclusion:

The central result of this paper is the statement of necessary and sufficient

conditions for the stabilizability of (1) under constant linear state feedback as

givem by Theorem 1 in the introduction. As a formal proof of that theorem we may

simarize the results of Sections 2-4.

If D is focal and [AD-1 b,bl 0 0 then (3) is g.a.s. iff sgn lAD- b,b - sgn kDx,x

according to Proposition 1 (Section 3). In this case a stabilizing controller is

given by c ! YDTJb, sgn y - sgn lDx,xi, and lyl suitably large. If IAD- 1 b,bl - 0
-I

and d is the other eigenvector of AD then a stabilizing controller given by

A T
c - D J(-d + Yb), sgn Y - sgn lDx,xl may be chosen iff the conditions of Proposition

2 (Section 3) hold. Thus, if D is focal, condition (i) of Theorem 1 is necessary

and sufficient for stabilizability.

If D is singular and nodal then (3) is g.a.s. iff d, its non-zero elgenvector,

is a stable eigenvector of A, according to Proposition 3 (Section 4). In this

case c ! Jd, sgn B - sgn Id,bl, IBI suitably large is a stabilizing controller.

If D is singular and critical then (3) is g.a.s. iff the conditions of Proposition

4 (Section 4) hold. If D is b-critical and those conditions are met, then any c

which stabilizes (A,b) in the sense of LTI pole-placement, stabilizes (1). If D

A T 1
is d-critical, and b 0 (d) and the conditions are met then c - (yd1 - A d1) TdhI

is a stabilizing controller. Thus, if D is singular, condition (ii) of Theorem 1

is necessary and sufficient for stabilizability.

If D is neither focal, nor singular then (3) is never g.a.s. according to

Lom 1 (Section 2). Thus Theorem 1 lists complete necessary and sufficient

conditions for stabilizability, as claimed.
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Appendix A

Stabilizability of (A,bD) and (Ab)

In Section 3 it is shown that jDx,x - [AD- b,b > 0 implies (A,b,D) may be

stabilized by c - yD T b. This result, given as Proposition 1, implicitly makes

use of the following.

Fact: If IDx,xl • lAD-lb,b > 0 then (A,b) is a stabilizable pair.

Proof: Without loss of generality assume IDx,xl > 0, and apply an identical proof

for the case IDx,xl < 0. If jAb,bj # 0 then (A,b) is controllable, and hence
2

stabilizable. If lAb,b - 0 then Ab - Bb I c R and Ad 6d for some d c IR , 6 cR.

If d j(b) then Dib - Y1
d + y 2b where Y ,y2 C E, # 0 since D- b 0 (b).

Iance ID- b,bj - (D- (lb,Dbl - -ID-1 (Db,b < 0 since jD-1 I 0. Moreover

ID-lb,bJ - y1Id,bI + y2 jb,bI - lld,bI. But IAD-'b,bI - tllAd,bI + Y2 Ab,hl
- 181db l - lDbbI > 0 iff 6 < 0 in which case (A,b) is stabilizable.

f~l'l

L1
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If d C (b) then 6 - 6 and if e c R is the generalized eigenvector of A -

i.e. Ae - se + b - then we may write D- b a y1 e + Y2b to get the identical result

as above. 0

Appendix B

Some Useful Properties of 2x2 Matrices

The following two properties are used extensively in Sections 2-4, and follow

from direct computation. Define J a [ . Then

1 1 TT 1 T T
Fact B.1. IDI 0 0 Implies D - OT--i 3 DJ DJD J

Fact B.2. IA + DI - JAl + IDI + tr{JTDTJA)

T T- IAI + IDI + tr{J A JD)

n an -- - . . .'I; .. .@ l ~ r l 'l " " . . . . . ' ' i i i n nn . . . .




